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Harmonic properties of hard-sphere crystals: 
a one-dimensional study 
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Poland 
P Institut Curie - Section de Physique et Chimie, Laboratoire Curie - 11, rue Pierre et 
Marie Curie, F-75231 Paris Cedex 05, France 

Received 21 January 1993 

Abstract. We show that the hard rod fluid in one dimension behaves like a harmonic 
crystal when the high density limit is suitably defined. We highlight analogies and 
differences with analogous results for hard-sphere solids in higher dimensions. 

1. Introduction 

We describe an interesting analogy in the behaviour of two apparently very different 
systems: a hard rod fluid in one dimension and a linear chain of harmonically coupled 
.particles. The idea was sparked by the study of the results of D Young and B Alder on 
distribution functions for hard-sphere solids (Young and Alder 1974). They had 
indeed discovered that, in the high density limit, the singlet distribution acquired a 
Gaussian form, like the one for harmonic oscillators. The similarity between a hard- 
sphere crystal and a harmonic one appeared most clearly near the closest packing 
density. In this paper we show that this Gaussian property also holds in one 
dimension, if one considers a suitably defined high density limit. 

Hard rods (one-dimensional hard spheres) are supposed to have length U and to be 

linear order is preserved by the dynamics. The motion between hard elastic collisions 
is free. Hence, the probability density of a given configuration ( x , , ~ , .  . . . .xN; 
L, N ,  U) of N identical particles is given by 

~ ~ 

~ enclosed in a volume L (figure 1). The particles cannot penetrate each other. Their 

where 

Here 0 is the unit step function 
Q(N, L) = (L  - Nu)”!. 

forx>O 
forx<O. (3) 
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Figure 1. Hard-rod fluid. 

It is well known that a one-dimensional hard-rod fluid does not crystallize. It is 
only when the particles are constrained in a finite volume L that they fluctuate around 
well defined mean positions. This situation is forced by the external field represented 
by the rigid walls defining the volume L .  However, in the thermodynamic limit 

N+w ; L-2 m 

n = NIL = constant lim= (4) 

the rods become entirely delocalized. In fact one can prove (Jepsen 1965, Lebowitz 
and Percus 1967) that a tagged particle starting from a prescribed initial position 
follows in the long time limit a Brownian motion. This motion reflects a global 
diffusive motion of the fluid since particles cannot penetrate each other, their large- 
scale displacements involve the whole bulk of the fluid. No trace of localization is left. 

One can imagine that the delocalization by diffusion can be compensated by the 
increase in density. In an arbitrarily large system, if the density is large enough, the 
rods will be bound to oscillate around well defined mean positions ('lattice sites'). 
Following this idea we propose to study the l i t  where the volume L and the particle 
number N tend to infinity in such a way that the number density n = NIL approaches 
its closest packing value U-'. More specifically, we define the high density limit LIMHo 

e, 

by 
N+w,L+m 
LIN- a= - a= ?AI*. 

LIM, = 
01 

Here I is a fixed length scale. We let the specificvolume approach the closest packing 
density as the inverse square root of N ,  in order to compensate exactly the delocaliza- 
tion induced by the diffusive motion. 

In sections 2 and 3 we study the one- and two-particle distributions, respectively, 
in the asymptotic region (5). It turns out that they look like those characterizing a 
linear chain of harmonic oscillators. In order to analyse this analogy, we also evaluate 
the distributions for N point particles coupled to their nearest neighbours by springs 
with elastic constant k (figure 2). 

~ 
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FigureZ. Linear harmonic chain. 
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The probability density to find the N oscillators, of elastic constant equal to k, in a 
configuration (xl, x,, . . . , x N )  is given, up to a normalizing factor, by the Boltzmann 
formula 

exp{-pu(xl, xZ, ' ' ' xN)} (6) 

where U is the potential energy, B = l /k ,T,  kB is the Boltzmann constant and Tis  the 
temperature. With our assumptions, we have 

U ( X l , X * ,  . . . . XN) =z "(( xl+- :), + (x,-xj-l)z+ (gX.>3. (7) 
j = 2  

So. the extremities of the chain are attached to the points -L/2 and L/2,  defining the 
volume L. AU configurations of the oscillating points are allowed 

linear order is not preserved; 
the particles are free to move outside of the interval [ -L/2,  L/2] .  

We have set to zero the rest length of the springs, since it would not appear anyway in 
the formulae defining the one- and two-particle distributions. The rest length would 
be important in calculations involving the stress acting on the fixed extremities. We 
shall see in the next section that the oscillators also become delocalized, unless the 
spring constant k is taken to diverge proportionally to N .  

We are now ready to investigate the behaviour of both systems. 

2. One-particle distributions 

Let us calculate the probability density p(x; j )  for finding the jth particle at the point x. 
Such an event is only possible if the intervals [-L/2, x-o /2 ]  and [x+u/2 ,  L/2] are 
long enough to contain (j-1) and ( N - j )  particles respectively. The formula for 
p(x; j )  can be obtained by a straightforward calculation from equation (1). We find 

X Q  ( x + - , j - 1  ) Q r+' -x ,N- j ) /Q(N,L) ,  

where the volume Q has been defined in equation (2). 
In order to investigate bulk properties we set 

j =J + (N + 1)/2 (9) 

where we have assumed for convenience that N is odd. We now focus our attention on 
the Jth particle counting from the centre (which corresponds to J =  0). J is negative on 
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the left of the centre, and positive on its right. We thus let N go to infinity, while we 
keep J fixed. Combining equations (2) ,  (8), (9), we eventually get 
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N![x-Jo+ (L-Nu) /~]”(“‘ - ’~~[Ju-x+ (L-Nu)/~]-’+(”’-’)’~ 
X [J + (N + 1)/2]![-J + (N + 1)/2]!(L - NU)”’ ’ (10) 

The evaluation of the limit (5) yields the simple result 

1 
LIMHDP(x; J )  =z7 e& - (x - Ju)*/U2}. (11) 

Equation ( 1 1 )  shows that in the asymptotic region (5) the particles remain localized 
even in the infinite volume limit. The limit (5) has thus properly compensated the 
effect of diffusion. It is remarkable that we here obtain a Gaussian distribution, 
despite the fact that the motion of hard rods between collisions is free. If one tries to 
introduce an effective potential one has to choose the harmonic one. As has already 
been mentioned in the introduction, the appearance of a Gaussian distribution could 
be expected on the basis of molecular dynamics calculations (Young and Alder 1974). 
The limit (5) allows one to derive analytically this interesting property in one 
dimension. 

In order to develop the analogy with the harmonic chain let us now evaluate the 
probability density P(x;])  for finding the jth oscillator in position x .  The calculation is 
straightforward, since it involves only Gaussian integrals (see equations (6), (7)). We 
obtain 

where 

is the equilibrium position of point f, for which one has 

Letting again j=J + ( N +  1)/2 (see equation (9)), we find for the oscillator in the bulk 
the law 

(14) 
Pk N + 1  ] ‘I2 exp[ - - ( X - - j , Y  2 ((N+1)/2)’-JZ 

where&=JL/(N+l). 
Let us first remark that the oscillators become delocalized in the thermodynamic 

limit (4). This happens because the effective spring constant determining the ampli- 
tude of the forces which act on a given particle decreases as N-’ (see equation (12)).  
Particles are thus more and more weakly bound and can fluctuate over larger and 
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larger distances. In order to maintain the localization we must then combine the 
thermodynamic limit with a suitable rescaling of the elastic constant: k =  NK. We can 
thus define the strong coupling limit 

N+ m , L + m  
D )  n=N/L=constant. k=Nu. 

We thus obtain the asymptotic form of equation (14): 

~~ 

exp{-ZgK(x -J/n)’}.  

Equations (16) and (11) establish the analogy in the behaviour of hard rods and 
harmonic oscillators in the high density and strong coupling limits respectively. 
(Notice that U in equation (11) can be replaced by n-’ for N+m, since 
n-‘-u=WI<N.) 

3. Two-particle distributions 

Although the hard rod fluid performs a Brownian motion as a whole, the fluctuations 
of the distance between a pair of particles are governed by a well defined distribution 
in the thermodynamic limit. This reflects the fact that, owing to the impenetrability of 
the rods, the fluid formed from them is a strongly bound system. 

We begin by calculating the conditional probability density p,,(y; 1Ix;j)  to find 
particle 1 = j +  r, I =  1.2, . . . at pointy provided that particle j stands at point x .  Fixing 
the position of particles j and l = j + r  divides the volume L into three subvolumes 
[x+(L-u)/Z], [ y - x - U ] ,  and [(L-u)/Z-y]. respectively containing (j-l), ( r -  l), 
and ( N - j - r )  particles. Therefore, the joint probability density for finding particle 
( j + r )  at point y and particle j at point x will be given by the product of the three 8 
functions for the intervals: 

e(y-x-ro)e y-(N-j-r)u 

times the statistical weight 

1, x +hu)8(r 2 - 1, y - x  - u)Q N - j -  r ,  - 2 - (17) 
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We again situate particle j in the bulk by introducing J (equation (9)), and dividing by 
the one-particle density (8) we obtain the conditional probability density: 

J Piasecki and L Peiiti 

-J-rt(N-I)/Z 1 , . , , , ,, , ,I , 

+ ( J + r ) u - y  ( y  -x - r u y  
X 

- J - r + =) ! 
2 

( r - l ) !  

( - J + Y ) !  
“ ,. [ p - x + J u ]  -I+(N-1)/2’  

The thermodynamic limit can be readily calculated, yielding 

lim pl,(y; J +  rlx; J )  = B(y -x- ru) 
m 

X-[- 1 n ( y - x - r u ) ]  ,-I exp( - x u ( y - x - r u )  n (r-l)!  1-nu 

The distribution of ( y  --x - ru) follows therefore a ,y* law with r degrees of freedom, 
and approaches a Gaussian when r becomes large (Abramowitz and Stegun 1964). 
Equation (19) could be derived in fact by considering the distribution of hard rods 
close to the boundary. Indeed, when calculating the conditional probability density 
pI1(y; J+r lx ;J )  we fix the position of particle J which plays the role of an impen- 
etrable wall of particle ( J + r ) .  In the high density limit we simply find 

LIMHDpll(y;J+ m rlx; J )  = S(y - x -  ru), (20) 

where 6 is Dirac’s distribution. Therefore, in the limit (5), hard rods behave like a 
rigid body, subject however to Gaussian fluctuations (11). The asymptotic form of the 
joint probability density for finding particle J at x and particle (J+ r )  at y is thus given 
by ’ 

In the case of the harmonic chain the calculation of the conditional probability 
density pll(y; J + r l x ; J )  is straightforward. We thus give directly the result after the 
thermodynamic limit has been taken: 

lim * pll(y; J +  rlx; J) = exp{ - g ( y  -x -:TI. 
The result is finite because the spring coupling particles J and (J+ r)  does not weaken 
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in the thermodynamic limit, maintaining a constant effective elastic coefficient (k/r) .  
Again, the strong coupling limit (15) leads to a rigid-body-like behaviour: 

LIMscp,,(y; ID J+rlx;J)  =d(y- r -  rln).  (23) 

The system keeps however oscillating as a whole according to the distribution (16). 
Equations ( l l ) ,  (16), (ZO), and (23) show a complete analogy in the behaviour of a 

hard rod fluid in the high density limit (5), and of a linear oscillator chain in the strong 
coupling limit (15). 

- 4. Concluding remarks 

The most interesting result presented in this note is contained in equation (11). 
Considering the high density limit (9, we found a Gaussian distribution of hard rods 
around their mean positions. Molecular dynamics ,simulations (Young and Alder 
1974) indicate that the same phenomenon should be observed,in the thermodynamic 
limit at high solid state densities. In the same limit, the two-point correlation function 
acquires a x’ form, which becomes practically indistinguishable from a Gaussian (by 
the central limit theorem) when r is of the order of 30 (Abramowitz and Stegnn 1964). 
Even at smaller values of r, the low moments of the distribution are close to the 
corresponding Gaussian values. There is therefore a whole range of densities where 
the pure excluded volume effect leads to harmonic-like behaviour. It is likely that this 
phenomenon may be traced back to the numerous collisions experienced by any 
particle with its neighbours at high densities, which make its position become the sum 
of a great number of small displacements. A somewhat analogous property pertains to 
concentrated polymer solutions. When the concentration of polymers increases the 
distribution of the conformation becomes Gaussian (Flory 1949, see also de Gennes 
1979, p: 54ff). The ingredients leading to this behaviour are the Brownian motion of 
the chains and the excluded volume interactions among the monomers. The chains 
turn out to be Gaussian since each monomer evolves in the effective field created by 
the monomers belonging to all diferent chains. Thus the appearance of Gaussian 
distributions is due to the same mechanism which is responsible for the central limit 
theorem. 
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